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1 Abstract 

We describe an algorithm which gives a natural basis for the power series solu- 
tions for a, large class of polynomial coefficient ordinary differential equation of 
homogeneous order. 

2 Introduction 

We describe an  algorithm which gives a natural basis for the power series so- 
lutions for a large class of polynomial coefficient ordinary differential equation 
of homogeneous order. By a natural basis we mean that any element in the 
nullspace can be written in the simple form f(x)  = &sjsh-~j 31/ )lloe,(x) 
(where D(3) = &) and where e 3 ( x ) ,  0 5 5 h - 1 is the basis. This form will 
be valid for a litrge class of polynomial coefficient ordinary differential equations 
that we consider. 

In contrast, the standard method for describing a basis for even the sim- 
plist linear homogeneous order ordinary differential equation F & < k < h a k ~ ( ~ )  = 0 
(where ak arc constants) is written in a form (using roots of the characteristic 
polynomial) which cannot readily be used to describe an arbitrary element of 
the nullspace. 

In fact we solve a more general problem which deals with noncommutative 
linear operators (of shift type) defined on a linear space with countably infinite 
basis. A special case of this more general problem and its solution will be that 
described above. 

A variety o f  books and papers discuss solutions of other special cases of 
linear polynomial coefficient ordinary differential equations. To a large extend 
these special rases have solutions which can be expressed in closed form (as 
is the standard method for describing a basis of solutions to linear constant 

D ( 3 )  f x 
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coefficient ordiimry differential equations). For a survey of general methods see, 
for example, [l], Ch.l-5;[2],Ch.3; [5],Ch.3; and [3]. 

3 A Nullspace Problem on an Infinite Dimen- 
sional Linear Space 

Let U be a. linear space with basis uk, IC E N 3 {0,1,2, ...}. So U = Span{uk} 
{ C k E ~ a k ~ k ( a k  E R) (where R is the field over which U is defined) . By a basis 
we mean that, C k E ~ a k u k  = 0 iinplies that ak  = 0 for all k. We also define the 
projection operators nj : U -+ R by T , ~ ( C ~ ~ N U ~ U ~ )  = aj (for j E N). The ~j 

are well defined since the uk form a basis. So we have 

II = CpOnj(9)uj 

for g E U .  
We c0nside.r the shift linear operators p j  : U -+ U (0 5 j 5 h) defined by 

~ ~ ( C ~ E N U ~ I L ~ )  = C k s ~ ~ k ~ l j , k ~ k - j  (where ui 0 for i 5 0 and where aj,k E R). 
(Note that, these operators do not commute unless uj,kc+--j = o i , k a j , k - i  for all 

The problem we set ourselves is: Given the linear operator P(p)  = ph - 
C0<j<,~-1cjpj ,c j  E R which operates on U find a basis for Icer(P(p)) = {f E 

i ,  . j ,  I C . )  

UlP(P)f = 01. 
To solve this problem we will require tha,t 

b k , k + h  # 0 

for IC 2 0. We ;tlso need to use two auxilliary linear spaces. One of these spaces, 
V ,  will have ba.sis v k ,  IC E N and linear operators YJ : V + V given by 

V ' ( % C E N ~ % )  = x l c E N b k U j j , j + k w j + k c .  (1) 

for 0 5 j 5 h,. The other anxiliary linear space W having basis QO, ..., ah-1 is 
defined as follows: 

Let 4 : V -+ W Span{ao, ..., cYh-1) where 

$ ( ~ j )  E aj,O 5 j 5 h - 1, (2) 

and for IC 2 1 we recursively define 

Hencc for k E. N, 0 5 j 5 h - 1 there exist constants d k , j  so that 
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We extend the meaning ofrr, to W (for 0 L: k 5 h-1) by setting rk(Co<,g+lb,a,) - 3 

Then by (2) we have 
bk * 

d k , ~  = rk( '$( '%)) = f ik , ,  (6) 

for 0 5 j ,  k: 2 h - 1 where &,, js the Kronecker 6. 

have 
Defining P(v )  - CO<J<h-1cJv3 we note that by our construction we 

(7) h 
$ ( P ( V ) ' U k )  = $(v - Co<J<h-lcJvJ)vk = 0. 

for k 2 0. 
Define 

e, = C E O d k , J U k  

Tk (e,) = &,J. 

(for 0 5 j 5 h - 1) and note that by (2) and (6) we have 

Our main theorem is: 
THEOREM. 

i) The ej a.re linea,rly independent and P ( p ) e j  = 0 for 0 5 j 5 h - 1, 

ii) for f E ker (P(p ) )  we have f = C;;i(7lj.f)ej, 

iii) k e r ( P ( p ) )  has dimension h. 

Before proving our theorem we note the following calculation which relates 
the operators P ( p )  and P(Y)  via a tensor product on the linear spaces U and 
V .  

and 

For 0 5 j 5 I-1 we have 
(P~@1)%=0 uk@'vk = c r = o = , g j , k u k - j @ v k  = C r = j g j , k u k - j @ v k  = Z & o j , k + j U k @  

vk+j = cp=.=, Uk: 8 c r j , k + j V k + j  = (1 @ vj)Cgouk, @ vk,. 
More generally we have 
( Q ( p )  @ l)Cr=ouk @ vk = (1 @ Q ( ~ ) ) C p = ~ u k  @ v,+ where & ( p )  = C;Zibjpj 

PROOF of THEOREM: 
First we show that, P ( p ) e j  = 0 for 0 5 j 5 h - 1, then we show that every 

and &(v) = C;;ibjvj for bj E R. 

solution can be written in the form C$;;(r j f )e j  = 0. 
NOW ( P ( l ) @ $ ) C g o ~ k @ ~ k  -= (l@$)Cr=O~k@P(v)vr~ CT=~,OU~C@~P(~)V~C = 

0 by (7). 
Hence 
0 = ( P ( p )  c.3 l ) c g o u k  @$Uk = ( P ( p )  @ l)cp=Ouk @ (C;z;dk , ja j )  = (P(p)  @ 

1)E;ziej @ aj = 0 which implies that P(p)e j  = 0 for 0 5 j 5 h - 1 
since (2) implies that ao, . . . , ah-1 are linearly independent. 
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M ( k  + h) I_ 
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(To k - 0  0 0 0 0 CO,,,‘+, 
1 0 0 . . .  0 0 cl* 
O 0 . . .  O 0 

C2crh:k+h 

u h , k + h  
b a  k+a 

. . .  , , .  . . .  . . .  . . .  , , .  
0 1 C h - l ~ h - l , k + h - l  

- c h , k f h  
0 0 0 ” .  



4 Application to Polynomial Coefficient ODE’S 
Let R[z,D] denote the ring of polynomials in z and D 
R [ x ,  D]  act as operators on R[[z]]  the ring of formal power series in x .  

$. The elements of 

R [ x ,  D] is noncommutative since 

D z = l + z D  (8 )  

which follows from the fact that for f E Iz[[x]]  we have ( D z ) f  = D ( x f )  = 
f + z D ( f )  = ( 1 S z D ) f .  This algebra and its generalizaiion to partial differential 
equa,tions are called Weyl Algebras. 

We will call xkDm,(K, m E N) a reduced term of R[z ,  D]. By (8), a,ny term in 
R[z,  D]  can be written as a linea,r combination of reduced terms. In particular 
we will assume that any polynomial P ( x ,  D )  E R[x,  D] is written as a linear 
combination of reduced terms. 

For j E Z define Fj = S p a n ~ { z q D ~ l q  - rn = j } .  Then R[z ,D]  = @YmFj. 
So we will write any polynomial in R[z ,  D]  in the form 

P ( z ,  D )  = Ph(2, D )  - CO<j-gL-lPj(X, D) 

where Pj(z,  D) E Fj.  
We are now interested in how an arbitrary element 

Q,i = C[q-m,=jlbj,4,,24D” E Fj 

(for j E Z) operates on R[[z]] .  
Now 

xq ( xk )  zq+k ,  

if ( I C  - rn) E N, Drn(xk)  = k!  x k - m  

(IC - m)! 

and 
D”(x’) = 0 if ( K  - m) 6 N. 

IJsing the notation c(m, I C )  t= & if ( I C  - m) 2 0 and c(m, I C )  0 if ( I C  - 
rn) < 0 we get that 



Hence therc: exist constants o j , k  E C [ , = ~ ~ - j ] b j , ~ ~ , , c ( m ,  k )  E R so that 

Q j ( x k )  = c~,Icx”’ .  

REMARK: Va,rious properties of the general Weyl Algebra are discussed in 
Chapter 1 of the excellent book [4]. 

5 An Algorithm for finding a Basis for ker(P(z ,  D ) )  

Let f ‘ ( z ,n)  = Ph,(z,D) - Co<j<h-lP’(z,D) where U j , k  are defined so that 
P j ( x ,  D )xk  = a , i , k x k - j  for Pj(z ,  D )  E Fj.  We also require that and O h , h + k  # 0 
for k 2 0. 

a.nd where a j , k  are defined above. 
Let u s p n { U ~ ~ } ,  P ( p )  = /*’L-C~<,j<h-l/h’ where / d ( C E o U k u I C )  C g j f f j , k a k u k - j  

The algorithm in Section 3 shows how to construct a set of h solutions 
f?j = C o < I C < ~ d k , j u k , O  5 j 5 h - 1 SO that 

i) ej a,re linearly independent and P ( p ) e j  = 0, 

ii) any f E Icer(P(p)) can be written in the form f = CoLj<h-1(.rrjf)ej. 

Another conclusion from Section 3 is that 

Icer(P(p)) has dimension h. 

The algoritlim also shows how to compute the d k , j  via a matrix product. 
Consider the R linear isomorphism Q’ : U 4 R[[z]l given by 

k 
Q ( U k )  = 3: , 

Q(p j )  = P j ( X ,  u.) 
and 

for k E N and 0 <_ j <_ h. 
so  

and we have tliat 
Q : k e r ( P ( p ) )  -+ ker (P(z ,  D)) 

is one to one aiid onto. 
Set, 

e,(x) G Q ( e j )  = C p = o d k , j z  IC 

for 0 <_ j 5 h-- 1. 



for any f E U .  
Hence 
ker (P(x ,D) )  = {f(x) E R[[x]]1P(x ,D) f (z )  = 0) has dimension h and the 

algorithm in the Section 3 shows how to compute a basis e j  (and consequently 
e j ( x ) )  having the property that if' f(x) E ker(P(z,  D ) )  then 

REMARK. The construction in Section 3 should extend to give a basis for 
the case where p h  - Cl<j<h-1Cjbu3 and 1 < 0, h > 0. The case (where dh,h+,k = 0 
for some k 2 0) would require a morc delicate analysis than the one in this paper 
since the itera,tion process would have to be significantly modified. 

REMARK: In addition to giving a survey of methods used in analysing and 
solving ordinary differential equa,tions, the paper [3] also gives an extensive 
bibliogra,phy. 
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